Usage#

This section demonstrates the most basic usage via import ipypandas.

Imports#

The execution of import ipypandas enables ipypandas globally.

[1]:
import numpy as np
import pandas as pd
[2]:
# enables ipypandas output
import ipypandas

Options#

Pandas options that will affect the ipypandas rendering.

[3]:
# The numbers of rows to show in a truncated view (when max_rows is exceeded).
# Ignored when max_rows is set to None or 0. When set to None, follows the value of max_rows.
pd.set_option('display.min_rows', 10)  # [default: 10]
[4]:
# If max_rows is exceeded, switch to truncate view.
# Depending on large_repr, objects are either centrally truncated or printed as a summary view.
pd.set_option('display.max_rows', 60)  # [default: 60]
[5]:
# The maximum width in characters of a column in the repr of a pandas data structure.
# When the column overflows, a “…” placeholder is embedded in the output.
pd.set_option('display.max_colwidth', 50)  # [default: 50]
[6]:
# Floating point output precision in terms of number of places after the decimal.
# For regular formatting as well as scientific notation.
pd.set_option('display.precision', 6)  # [default: 6]

Demos#

Example data used for demo purposes.

[7]:
df = pd.DataFrame(np.random.randint(1000, 9999, (1000, 5)), columns=['A', 'B', 'C', 'D', 'E'])

Running ipypandas.enable() will enable all interactive features.

[8]:
ipypandas.enable()

# interactive ipypandas rendering
df

Running ipypandas.disable() will disable all interactive features.

[9]:
ipypandas.disable()

# default pandas rendering
df
[9]:
A B C D E
0 1392 6625 6315 3493 8985
1 9009 5472 8538 1152 2791
2 2197 6414 9545 7302 1726
3 6017 5987 1211 9825 5930
4 1141 2724 9873 5356 6862
... ... ... ... ... ...
995 6504 4735 2473 1037 1017
996 2196 1320 7094 5414 1170
997 9552 7153 9599 8186 7339
998 9321 7489 6474 8309 5058
999 6981 8784 2888 7654 7556

1000 rows × 5 columns